首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36824篇
  免费   2780篇
  国内免费   2258篇
化学   22804篇
晶体学   178篇
力学   1132篇
综合类   671篇
数学   6791篇
物理学   10286篇
  2023年   262篇
  2022年   476篇
  2021年   1299篇
  2020年   898篇
  2019年   959篇
  2018年   747篇
  2017年   825篇
  2016年   1030篇
  2015年   1105篇
  2014年   1313篇
  2013年   2374篇
  2012年   1778篇
  2011年   1821篇
  2010年   1696篇
  2009年   2062篇
  2008年   2192篇
  2007年   2398篇
  2006年   1898篇
  2005年   1223篇
  2004年   1159篇
  2003年   1161篇
  2002年   1113篇
  2001年   1079篇
  2000年   801篇
  1999年   686篇
  1998年   641篇
  1997年   559篇
  1996年   568篇
  1995年   549篇
  1994年   530篇
  1993年   544篇
  1992年   542篇
  1991年   381篇
  1990年   336篇
  1989年   280篇
  1988年   301篇
  1987年   241篇
  1986年   240篇
  1985年   343篇
  1984年   263篇
  1983年   159篇
  1982年   309篇
  1981年   477篇
  1980年   437篇
  1979年   472篇
  1978年   376篇
  1977年   283篇
  1976年   242篇
  1974年   78篇
  1973年   152篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
The detection of Allura red (AR) by electrochemical reduction using a different electrode from the conventional mercury electrode is presented. A carbon paste with cobalt (II, III) oxide composite electrode (CoOx/CPE) is reported for the first time for the detection of AR. Moreover, others dyes such as tartrazine (TZ), sunset yellow (SY), amaranth (AM), Ponceaut 4‐R (P‐4R), and Sudan (SD) as well as pharmaceutical agents such as paracetamol (PMC) that are present in samples that contained AR did not show a reduced signal between 0.0 and ?0.3 V, which is the potential range where AR reduction was observed. The surface electroactivity was studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The presence of CoOX increased the cathodic peak current for AR by more than 50 % and 65 % via CV and square wave voltammetry (SWV), respectively, compared with an unmodified carbon paste electrode. Under the optimal parameters, (pH=3.0, accumulation time (tACC)=60 s and accumulation potential (EACC)=0.50 V), the detection limit for AR was 0.05 μmol L?1. The new sensor was sensitive and stable for the detection of AR. Moreover, it was easily manufactured and very convenient for food samples such as soft and isotonic drinks as well as chili sauce.  相似文献   
102.
As is known, if B=(Bt)t[0,T] is a G-Brownian motion, a process of form 0tηsdBs?0t2G(ηs)ds, ηMG1(0,T), is a non-increasing G-martingale. In this paper, we shall show that a non-increasing G-martingale cannot be form of 0tηsds or 0tγsdBs, η,γMG1(0,T), which implies that the decomposition for generalized G-Itô processes is unique: For arbitrary ζHG1(0,T), ηMG1(0,T) and non-increasing G-martingales K,L, if 0tζsdBs+0tηsds+Kt=Lt,t[0,T],then we have η0, ζ0 andKt=Lt. As an application, we give a characterization to the G-Sobolev spaces introduced in Peng and Song (2015).  相似文献   
103.
A simple, sensitive and rapid ultra‐high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry method was developed and validated for the quantification of warfarin and 7‐hydroxy warfarin in Sprague Dawley (SD) rats. Animals were administered a single dose of warfarin sodium formulations (crystalline and amorphous) at 12 mg/kg via oral gavage and blood was drawn over a 96‐h time course. Sample process recoveries, matrix effect and analyte stability were determined. The linearity for warfarin and 7‐hydroxy warfarin was from 5 to 2000 ng/mL in blank SD rat plasma. Correlation coefficients (r2) for standard calibration curves were >.98 and analytes quantified within ±15% of target at all calibrator concentrations. The average percent accuracy and precision for intra‐ and inter‐day were 93.7%–113.8% and ≤12.1%, respectively, for warfarin and 7‐hydroxy warfarin, across the quality control standards (5, 10, 500, 1800 and 2000 ng/mL). Acceptable analytical recovery (>55%) was achieved with process efficiencies >41.5% and matrix effects <139.9% over the analytical range. Both analytes were stable in stock solution, autosampler, benchtop and three cycles of freeze–thaw with percent accuracy ≥90.2% and precision (percent relative standard deviation) ≤14%. The validated method was successfully applied to a pre‐clinical bioavailability study of crystalline and amorphous warfarin sodium formulations in SD rats.  相似文献   
104.
In this paper, the author gives the discrete criteria and J\o rgensen inequalities of subgroups for the special linear group on $\overline{\mathrm{F}}((t))$ in two and higher dimensions.  相似文献   
105.
106.
107.
Reducing gas contaminants by affordable and effective adsorbents is a major challenge in the 21st century. In the present study, thorium metal organic framework (Th‐MOF) nanostructures are introduced as highly efficient adsorbents. These compounds were manufactured via a novel route resulting from the development of microwave assisted reverse micelle (MARM) and ultrasound assisted reverse micelle (UARM) methods. The products were characterized utilizing XRD, SEM, TGA/DSC, BET, and FT‐IR analyses. Based on the results, the samples synthesized by MARM had uniform size distribution, high thermal stability, and significant surface area. Calculations using DFT/B3LYP indicated that the compounds have a tendency to the polymeric form, which could theoretically confirm the formation of Th‐MOF. Results of analysis of variance (ANOVA) showed that synthesis parameters played a critical role in the manufacturing of products with distinctive properties. Response surface methodology (RSM) predicted the possibility of creating Th‐MOF adsorbents with the surface area of 2579 m2/g, which was a considerable value in comparison with the properties of other adsorbents. Adsorption studies showed that, in the optimum conditions, the Th‐MOF products had high adsorption capacity for CO and CH4. It is believed that the synthesis protocol developed in the present study and the systematic studies conducted on the samples which lead to products with ideal adsorption properties.  相似文献   
108.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
109.
Sodium/potassium-ion batteries (SIBs/PIBs) arouse intensive interest on account of the natural abundance of sodium/potassium resources, the competitive cost and appropriate redox potential. Nevertheless, the huge challenge for SIBs/PIBs lies in the scarcity of an anode material with high capacity and stable structure, which are capable of accommodating large-size ions during cycling. Furthermore, using sustainable natural biomass to fabricate electrodes for energy storage applications is a hot topic. Herein, an ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon is reported, which is synthesized by using chlorella as the adsorbent and precursor. As a consequence, the MoSe2/NP-C-2 composite represents exceedingly impressive electrochemical performance for both sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs). It displays a promising reversible capacity (523 mAh g−1 at 100 mA g−1 after 100 cycles) and impressive long-term cycling performance (192 mAh g−1 at 5 A g−1 even after 1000 cycles) in SIBs, which are some of the best properties of MoSe2-based anode materials for SIBs to date. To further probe the great potential applications, full SIBs pairing the MoSe2/NP-C-2 composite anode with a Na3V2(PO4)3 cathode also exhibits a satisfactory capacity of 215 mAh g−1 at 500 mA g−1 after 100 cycles. Moreover, it also delivers a decent reversible capacity of 131 mAh g−1 at 1 A g−1 even after 250 cycles for PIBs.  相似文献   
110.
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandula angustifolia Mill., Syzygium aromaticum L., Foeniculum vulgare Mill., and Laurus nobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号